Text Independent Language Recognition using Dhmm
نویسندگان
چکیده
منابع مشابه
Text Independent Language Recognition using Dhmm
Spoken Language Identification is a task of recognizing the language from an unknown utterance of speech. The ability of machines to distinguish between different languages becomes an important concern with the emerging trends in global communications which are multilingual nature. This paper describes a text independent language recognition system using a common code book and discrete hidden M...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملText Classification using Language-independent Pre-processing
A number of language-independent text pre-processing techniques, to support multi-class single-label text classification, are described and compared. A simple but effective statistical keyword identification approach is proposed, coupled with a number of phrase identification mechanisms. Experimental results are presented.
متن کاملText-independent speaker recognition using graph matching
Technical mismatches between the training and matching conditions adversely affect the performance of a speaker recognition system. In this paper, we present a matching scheme which is invariant to feature rotation, translation and uniform scaling. The proposed approach uses a neighborhood graph to represent the global shape of the feature distribution. The reference and test graphs are aligned...
متن کاملText independent speaker recognition using micro-prosody
The acoustic aspects that differentiate voices are difficult to separate from signal traits that reflect the identity of the sounds. There are two sources of variation among speakers: (1) differences in vocal cords and vocal tract shape, and (2) differences in speaking style. The latter includes variations in both target vocal tract positions for phonemes and dynamic aspects of speech, such as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2012
ISSN: 0975-8887
DOI: 10.5120/7364-0208